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Abstract
We present a small polaron hopping model for interpreting the strong
temperature (T ) dependence of the electrical conductivity, σ , observed at
high (h) temperatures along DNA molecules. The model takes into account
the one-dimensional character of the system and the presence of disorder
in the DNA double helix. Percolation-theoretical considerations lead to
analytical expressions for the high temperature multiphonon-assisted small
polaron hopping conductivity, the hopping distance and their temperature
dependence. The experimental data for lambda phage DNA (λ-DNA) and
poly(dA)–poly(dT) DNA follow nicely the theoretically predicted behaviour
(ln σ h ∼ T −2/3). Moreover, our model leads to realistic values of the maximum
hopping distances, supporting the idea of multiphonon-assisted hopping of
small polarons between next nearest neighbours of the DNA molecular ‘wire’.
The low temperature case is also investigated.

1. Introduction

Charge transport in DNA has attracted substantial interest from both biologists and physicists.
Early attempts to measure the conductivity of the DNA double helix were performed on pressed
pellets [1, 2]. Recent experiments have demonstrated long range charge migration along the
double helix, indicating that DNA is a candidate for being a one-dimensional (1D) molecular
wire [3–6]. The understanding of the charge transfer mechanism along the DNA double helix
is important in the long range chemistry of oxidative DNA damage and repair processes [7, 8],
monitoring protein–DNA interactions and for possible applications in nanoelectronic circuit
technology [9–15].

However, despite intensive investigation, the nature of the charge transfer mechanism
remains a subject of controversy. Several mechanisms have been proposed for the interpretation
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of the strong temperature dependence of the conductivity measured at high temperatures.
Unistep superexchange and multistep hopping [16, 17], carrier excitations across single-
particle gaps [18], bandlike electronic transport [19], variable range hopping [20] and small
polaron transport [21–26] are among the mechanisms suggested. It is plausible that when an
electron or a hole is injected into a deformable macromolecule such as DNA, it will induce
local distortions of the structure as the latter adjusts to the excess charge and lowers the system
energy [27]; in other words a ‘polaronic’ distortion will be formed.

Tran et al [18] measured the conductivity and its temperature dependence along the lambda
phage DNA (λ-DNA) double helix. Their low temperature data were attributed to ionic
conduction due to the counterions. It was also reported that such ionic conduction cannot
account for the strong temperature dependence and the large conductivity that they observed
at high temperatures. This was attributed to carrier excitations across single-particle gaps or
temperature driven hopping transport processes. Alternatively, they noticed that the observed
behaviour would occur if phonon-assisted polaron hopping was the actual transport mechanism.

Yoo et al [28] reported measurements of electrical transport through poly(dA)–poly(dT)
and poly(dG)–poly(dC) DNA molecules containing identical pairs. Their measured I–
V characteristics at various temperatures were interpreted using a small polaron hopping
model [29]. For the poly(dA)–poly(dT) regime they estimated the hopping distance to be
about 16.8 Å (five base pairs), while for poly(dG)–poly(dC) they found it to be 25 Å (seven
base pairs). Their effort to interpret the temperature dependence of the conductivity observed
by Tran et al [18], using the same polaron hopping model over the whole temperature range,
was not quite convincing and therefore they did not exclude other possible mechanisms.

Recently Kutnjak et al [30] reported measurements of temperature-dependent electrical
conductivity obtained in native wet-spun calf thymus Li-DNA. They concluded that their
measurements could be rather well described by the activated Arrhenius law but, on the basis
of the quality of the fits, they did not exclude hopping.

Tran et al [18] emphasized that the models proposed for the interpretation of the electrical
conductivity data had not taken into account the inherent disorder associated with the random
base sequences, and also the random potentials along the DNA double helix arising from
the randomly positioned positively charged counterions. The influence of counterion-induced
disorder in DNA conduction has been recently investigated by Adessi and Anantram [31].

Yu and Song [20], to interpret the experimental data reported by Tran et al [18], proposed
variable range hopping [32], considering DNA as a one-dimensional (1D) disordered system.
The possible small polaron character of the carriers was not taken into account; nor was any
multiphonon-assisted hopping mechanism which may be present at high temperatures. They
concluded that on decreasing temperature, the conduction mechanism changes from nearest
neighbour to variable range hopping [32].

Zhang et al [33] used a polaron model to study the effect of large molecular rotations on
the usual hopping between neighbouring sites in systems with torsional degrees of freedom
such as actual DNA molecules. This, along with the strong anharmonic interactions, may be
of relevance for electronic transport in DNA, but these are beyond the scope of the present
work.

Most recently Alexandre et al [34] reported ab initio calculations for poly(dC)–poly(dG)
DNA, with up to four C–G pairs. They found a strong hole–lattice coupling and clear evidence
for formation of small polarons and estimated the activation energy for polaron hopping and
the polaron binding energies. They noticed that the estimate of Yoo et al [28] for the mean
polaron hopping length, equal to 25 Å, seems surprisingly large for small polarons.

Summarizing the theoretical effort put in so far, it is of importance to underline the
following points:
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(i) To our knowledge, none of the models proposed takes explicitly into account the effect
of disorder on the small polaron binding energy. This affects drastically the intrinsic
transition rate for a hop from a molecular site i to a neighbouring site j , and consequently
the temperature dependence of the conductivity [35, 36].

(ii) The multiphonon-assisted character of the hopping mechanism at high temperatures,
which is also reflected in the expression of the intrinsic transition rate, has not been
taken into account.

(iii) There is a lack of a systematic derivation of an analytical expression for the electrical
conductivity and the hopping distance as functions of the temperature, appropriate
for multiphonon-assisted small polaron transport through a disordered one-dimensional
medium, interpreting in a consistent way charge transport along the DNA ‘wire’.

The aim of the present work is to propose a transport model which incorporates all the
above characteristics ((i)–(iii)) and interprets consistently the observed conductivity behaviour
at high temperatures. In section 2 we give a description of the model used. On the basis of
the ‘microscopic’ intrinsic transition rates, percolation arguments appropriate for the one-
dimensional case under study lead to macroscopic analytical expressions for the temperature
dependence of the low and the high temperature small polaron hopping conductivity. The
maximum hopping distance and its temperature dependence are also obtained. Our theoretical
results are applied to recent experimental data [18, 28] concerning the temperature dependence
of the electrical conductivity of different DNA samples, in section 3.

2. Theory

2.1. The model

The above characteristics ((i)–(iii)) had been taken into account by Triberis and Friedman [35]
and Triberis [36] introducing the generalized molecular crystal model (GMCM), as a
generalization of Holstein’s MCM [37], for the appropriate study of small polaron hopping
conductivity measured in bulk disordered systems.

For the case under study we consider a pair of neighbouring molecular lattice sites
of the DNA ‘wire’, ri and r j , with energy disorder arising from the inherent disorder
associated with the random base sequences, and the randomly positioned positively charged
counterions [18, 31]. Let us denote by εi(0), and ε j(0) the energies of the electrons on sites
at vector positions ri , and r j , respectively, if the ‘molecular lattice’ sites are constrained not
to be displaced in response to the presence of the electron. Due to the disorder, these local
electronic energies, εi(0) and ε j (0), are not equal. The energetic non-equivalence of the two
sites will affect the small polaron’s binding energy, Eb(i), in the sense that the lower the
local electronic energy is, the more localized the electronic wavefunction will tend to be and
consequently the larger its binding energy will be. Assuming that the stiffness of the ‘molecular
lattice’ is unaltered, the difference in binding energy means a difference in the electron–lattice
interaction parameters Ai and A j , i.e. Ei(xi) = εi (0)− Ai xi and E j(x j) = ε j (0)− A j x j with
Ai �= A j . Here, Ei(xi) is the electronic energy of the system of the electron and the isolated
molecule with configurational coordinate xi , which represents the deviation of the atoms of
the molecule at position ri from their equilibrium configuration, i.e. the local vibrational
displacement coordinate.

The GMCM model [35] is based on a generalized ‘hopping model’ Hamiltonian of the
form

〈m|H |n〉 = 〈m|H0 + V |n〉 = Ei,[nk]δi jδ[nk],[nk′ ] + 〈m|V |n〉. (1)
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The 〈m|V |n〉 term [35] is the overlap part of the Hamiltonian, |n〉 = |i, [nk]〉 are the eigenstates
of H , H0 is the zeroth-order (i.e. for the electronic overlap integral of the tight binding theory
J = 0) Hamiltonian and [nk] represents the totality of the vibrational quantum numbers
(. . . , nk, . . .) for the occupation of the site with position vector ri . The eigenvalues of H0 are

Ei,[nk ] = εi (0) − Eb(i) +
∑

k

h̄ωk
(
nk + 1

2

)
. (2)

Here, ωk is the normal-mode frequency and

Eb(i) = 1

N

∑

k

(A2
i /2Mω2

k), (3)

is the small polaron binding energy. N is the number of ‘molecular lattice’ sites and M is the
appropriate reduced atomic mass. The relation between ωk and its associated wavevector k,
i.e. the dispersion relation, is given by

ω2
k = ω2

0 + ω2
1

∑

k

cos(k · h′), (4)

where k = 2πp/N , the integer p lying in the range −(N − 1)/2 � p � (N − 1)/2, and h′
indexes the nearest neighbours (ri + h′) of an arbitrary site ri. ω0 is the harmonic oscillator
frequency associated with the configurational coordinate of the isolated molecule. The relation
ω1 � ω0 determines the weak dispersion limit. The equations (2) and (3) show the essential
features of the GMCM which are:

(1) Site-dependent local electronic energy εi (0).
(2) Site-dependent electron–lattice interaction parameter, Ai , and concomitant binding

energy, Eb(i).

The knowledge of 〈m|V |n〉 permits the evaluation of the ‘microscopic’ velocity
operator [38, 39],

ui j = 〈m|u|n〉 =
(

i

h̄

)
〈m|V |n〉(r j − ri ), (5)

the charge current density operator,

ji j = ncqui j , (6)

where nc is the charge carrier concentration and q is the carrier’s charge, the conductivity [40],

σi j =
∫ ∞

0
dt

∫ β

0
dρ〈 j (−ih̄ρ) j (t)〉, (7)

where β = 1/kBT and kB is Boltzmann’s constant. The mobility, µi j , and consequently the
diffusion constant are given by Di j = µi j/eβ. Thus, the ‘microscopic’ jump rate reads

Li j = Di j

|ri − r j |2 . (8)

2.2. Percolation treatment

Assuming that the dependence on the spatial separation Ri j of the two sites is exp(−2αRi j )

[41], α−1 being the spatial extent of the electronic wavefunction localized at a single site, the
‘microscopic’ intrinsic transition rate γi j , for a small polaron hopping from a site i to an empty
site j is given by

γi j = exp(−2αRi j)Li j . (9)
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Knowing the intrinsic transition rate, we obtain the average equilibrium transition
probability [35], W 0

i j :

W 0
i j = (W 0

i j W
0
j i )

1/2 = [n0
i (1 − n0

i )]
1/2[n0

j (1 − n0
j )]

1/2(γi jγ j i)
1/2, (10)

where n0
i is the equilibrium occupation probability of the i th site.

The analytical expressions for W 0
i j at high (h) [35] and low (l) [36] temperatures are

different due to the fact that the former is a multiphonon-assisted while the latter is a few-
phonon-assisted process. This is reflected in W 0

i j .
At high temperatures W 0h

i j is given by [35]

W 0h
i j = γ h

0 exp(−2αRi j ) exp[−(|Ei | + |E j | + 2ε2)/2kBT ]. (11)

Here ε2 = [Eb(i) + Eb( j)]/4 and γ h
0 is given by [35]

γ h
0 = (J 2/h̄)(π/4ε2kBT )1/2. (12)

Ei = εi (0) − Eb(i) is the electronic energy when the electron resides on site i . W 0h
i j depends

on both site energies Ei and E j .
At low temperatures, W 0l

i j depends solely on Ei or E j [36]:

W 0l
i j = γ l

0 exp(−2αRi j ) exp[−(|Ei | + |E j | + |Ei − E j |)/2kBT ], (13)

with γ l
0 given by

γ l
0 = (ω0/π)[π J exp(−2ε2/h̄ω0)/h̄ω0]2[(4ε2/h̄ω0)

�i j /h̄ω0/(�i j/h̄ω0)!]. (14)

This results in different percolation conditions and consequently in different behaviours
of the conductivity for the two regimes, taking no account of correlations between bonds due
to the energy of the common site [42].

The transport problem is transformed to an equivalent network of impedances Zi j [41],
given by

Zi j = [(q2/kBT )(W 0
i j)]

−1. (15)

At high temperatures, the impedances Z h
i j are given by

Z h
i j = Z h

0 exp(ξh
i j), (16)

where

Z h
0 = kBT/q2γ h

0 . (17)

ξh
i j = 2αRi j + Ei j/kBT, (18)

and

Ei j = [|Ei | + |E j | + 2ε2]/2. (19)

Assuming, as shown in [35], that the electronic energy, is mainly polaronic, i.e. |Ei | � Eb(i),
|E j | � Eb( j), hereafter we shall refer to the binding energy as the site energy, and we shall
use the symbol Ei instead of Eb(i) for convenience.

Percolation takes place when

Z h
i j � Z h

c . (20)

The inverse quantity Z h
c
−1

characterizes the macroscopically observed conductivity of the
material.

Due to equation (16) the condition for percolation, given by equation (20), reads

ξh
i j � ξh

c (21)
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or equivalently

Ri j

rh
m

+
Ei

Eh
m

+
E j

Eh
m

� 1, (22)

where rh
m = ξh

c /2α is the maximum hopping distance and Eh
m = k ′

BT ξh
c is the maximum site

energy. k ′
B = 4

3 kB.
The conductivity of the specimen is expressed as

σ h = σ h
0 exp(−ξh

c ), (23)

where σ h
0 = (Z h

0)
−1.

We apply the arguments given in [31] to our one-dimensional case. We define P(Zc) as
the average number of impedances of magnitude Zc or less connected to a given site, where
Zc is the impedance of the specimen.

According to Pollak [43], the condition for percolation reads

P(Zc) = θ. (24)

At high temperatures the function P(Z h
c ) can be evaluated from the distribution of the random

variables Ei , E j and Ri j , which enter into the expression for Z :

θ =
∫

z=const
p(Ei , E j , Ri j) dRi j dEi dE j . (25)

We assume a lack of correlation between successive impedances in a chain, and between
the distributions of Ri j and site energies. The integration extends over surfaces defined by

Ri j

rh
m

+
2E j − �i j

Eh
m

= 1. (26)

We obtain

P(Z h
c ) = θ =

∫ Eh
m

0

[∫ �′

�

1

NS
N(E − �)N(E)

(∫ R′

0
dR

)
dE

]
d�, (27)

where Ns is the concentration of sites, N(E) is the dos, �′ ≡ (Eh
m + �)/2 and R′ =

rh
m[1 − (2E − �)/Eh

m]. The indices of Ei , �i j and Ri j have been dropped. For the one-
dimensional case, for θ we use the value 2 [44]. We have chosen a constant density of states
N0 [35, 45–47], over an energy range Eh

m. Performing the integrations in equation (27), we
obtain

ξh
c = (T h

0 /T )2/3, (28)

where T h
0 = 271/2 N1/2

s α1/2/N0kB.
Thus, the conductivity of the high temperature multiphonon-assisted small polaron

hopping one-dimensional regime is given by

σ h = σ h
0 exp[−(T h

0 )2/3T −2/3]. (29)

For a given temperature, equation (29) is expressed as

σ h = σ h
0 exp(−2rh

m/α−1). (30)

Here,

rh
m = α−1(T h

0 )2/3T −2/3/2, (31)

i.e. the maximum hopping distance follows a T −2/3 law.
Equation (29) allows the evaluation of T h

0 from the slope of the fits of the experimental
data reported for DNA samples, plotted as ln σ h versus T −2/3. Using equation (31) we evaluate
the maximum small polaron hopping distance at the temperature of interest.
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At low temperatures, where only few phonons assist the small polaron hopping, the low
temperature analogue of equation (22) reads

Ri j

r l
m

+
E

El
m

� 1, (32)

where E equals E j if E j > Ei or Ei if Ei > E j , El
m = kBT ξ l

c and r l
m = ξ l

c/2α. Integrating
over surfaces of constant Z defined by

Ri j

r l
m

+
Ei (or E j)

El
m

= 1 (33)

we obtain

θ =
∫

z=const
p(E, Ri j) dRi j dE (34)

or

P(Zl
c) = θ =

∫ El
m

0
N(E)

(∫ Rl
m

0
dR

)
dE . (35)

Here Rl
m = (r l

m/El
m)(El

m − E).
Consequently, at low temperatures, ξ l

c = (T l
0/T )1/2, with T l

0 = (4α/N0kB), and the
conductivity is given by

σ l = σ l
0 exp[−(T l

0 )1/2T −1/2], (36)

where σ l
0 = (Zl

0)
−1. Zl

0 = kBT/q2γ l
0.

The maximum hopping distance at low temperatures is given by

r l
m = α−1(T l

0 )1/2T −1/2/2. (37)

Triberis and Friedman [35] reported that the T −2/5 law they derived for small polaron
transport in bulk disordered semiconductors, at high temperatures, follows a general law
which is based on the GMCM and percolation arguments, namely a T −ε/(ε+r) law. Here,
ε is the energy’s dimensions (number) involved in the percolation condition and r the spatial
dimensions involved. This law has been successfully applied to interpret the temperature
dependence of the conductivity of a variety of amorphous materials. A brief review is presented
in [48]. For the low temperature (bulk) case (ε = 1 and r = 3) the T −1/4 law (Mott’s law) was
obtained, which is also a widely accepted behaviour. For the case of longitudinal conduction
at low temperatures in thin films (ε = 1 and r = 2) a T −1/3 law was obtained [43]. For our
1D case at high temperatures (ε = 2 and r = 1) a T −2/3 law was expected, in accordance with
our result, while at low temperatures (ε = 1 and r = 1) we obtain a T −1/2 law, which is in
accordance with the variable range hopping results for localized states [43, 49, 50].

3. Results and discussion

We apply our theoretical results to recently reported experimental data. The Tran et al [18] data
at 12 GHz show pronounced strong temperature-dependent conductivity from 227 to 342 K,
i.e. in a 115 K wide temperature region (I). The corresponding values of the conductivity vary
from 0.28 up to 4.29 �−1 cm−1, respectively. At 100 GHz strong temperature dependence
is observed in a 90 K wide temperature region. Yoo et al [28], for poly(dA)–poly(dT) DNA
molecules, observed a similar behaviour from 178 to 306 K, i.e. in a 128 K wide temperature
region (II). The corresponding values of the conductance (G) vary from 3.31 × 10−11 �−1 up
to 1.5 ×10−8 �−1, respectively. Their measurements on poly(dG)–poly(dC) samples relate to
a much narrower temperature region about 89 K wide. The Kutnjak et al [30] data relate to a



2688 G P Triberis et al

0.021 0.024 0.027

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ln
[σ

(Ω
-1
cm

-1
)]

T -2/3   (K -2/3)

Figure 1. ln σ versus T −2/3 plot of the Tran et al [18] (12 GHz) (λ-DNA) data for the high
temperature (227–342 K) region.
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Figure 2. ln G versus T −2/3 plot of the Yoo et al [24] poly(dA)–poly(dT) DNA data for the high
temperature (178–306 K) region.

narrow temperature region of about 40 K up to 45 K. The experimental values of the measured
conductivity vary by orders of magnitude within different temperature ranges, more or less
wide. We have applied our theoretical approach to the data which relate to the wider ‘high
temperature’ regions (I and II) to maximize the credibility of the fits. As ‘high temperature’
regions we characterize those in which the measured conductivity shows a pronounced strong
dependence, although this is strictly determined by the condition h̄ω0 � kBT [39]. The low
temperature region is characterized by a very weak temperature dependence of the conductivity.

Figures 1 and 2 show ln σ and ln G as a function of T −2/3 for the Tran et al (12 GHz)
(λ-DNA) [18] (I) and Yoo et al (poly(dA)–poly(dT)) [28] (II) high temperature data. For α−1

we use the value 2 Å which is within the range of values usually used for DNA and similar
structures [20, 51]. The experimental data follow nicely the T −2/3 law.
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Given that the strong temperature dependence of the measured conductivity can be equally
nicely fitted using different exponential laws, as has been attempted in the past [18, 20, 28, 30],
the quality of the fits does not necessarily guarantee the validity of our theoretical approach.
However, our theoretical analysis allows the evaluation of the maximum hopping distance.
This, along with the inclusion of the appropriate characteristics ((i)–(iii)) of the system under
study, is important for testing the reliability of our theory.

The value of T h
0 is determined from the slopes (equation (29)) of the curves given in

figures 1 and 2. Using equation (31) we evaluate the maximum hopping distance rh
m(T )

at the lower and higher temperatures of the ‘high temperature’ region. For the Tran et al
[18] data(I), we obtain T h

0 (I) = 8.79 × 103 K, rh
m(I)(227 K) = 11.4 Å (three base pairs)

and rh
m(I)(342 K) = 8.7 Å (two base pairs). Correspondingly, for the Yoo et al [28]

data(II), we obtain T h
0 (II) = 1.45 × 104 K, rh

m(II)(178 K) = 18.8 Å (five base pairs) and
rh

m(II)(306 K) = 13 Å (four base pairs).
The value of rh

m(II) obtained at 306 K (13 Å) for the poly(dA)–poly(dT) sample is
comparable with the value 16.8 Å reported by Yoo et al [28]. Here we must note that the
lack of an analytical expression based on a transport mechanism, appropriate for the specific
system, forced Yoo et al [28] to use the (fitting) parameter b to fit their experimental data as
I ∼ bV . According to the authors, the parameter b has a temperature dependence whose
physical origin is not clear. The above probably resulted from an unconvincing attempt, as the
authors [28] noticed, at the interpretation of Tran et al data. The approach presented in the
present work does not need any fitting parameter because the transport mechanism responsible
is described in detail; it is based on first principles, leading to analytical expressions for the
conductivity as a function of the temperature, and the maximum hopping distance as well.

Our results support small polaron hopping to next neighbour sites, at high temperatures, as
responsible for the strong temperature dependence of the conductivity measured. They imply
that as the temperature increases, in the high temperature regime, shorter hops (or equivalently
smaller impedances; cf equations (29) and (30)) contribute to the transport process, resulting
in an increase of the conductivity, in accordance with experiment.

We also investigated the possibility of an interpretation of the weak temperature
dependence of the conductivity at low temperatures, using the low temperature T −1/2 results,
given by equations (36) and (37). We obtained unacceptably low values for the maximum
hopping distances, much lower than those obtained for the high temperature regime, in contrast
with the much lower conductivity measured. Thus, small polaron hopping does not seem to
be responsible for the charge transport, at low temperatures, in DNA, in accordance with other
reports [18, 28].

4. Conclusion

In conclusion, on the basis of a multiphonon-assisted small polaron hopping model we have
obtained analytical expressions for the high temperature hopping conductivity in the presence of
disorder in one dimension. Comparison of the theoretical results with recent experimental data
for charge transport along the DNA double helix leads to realistic maximum hopping distances
and consistent interpretation of their temperature dependence. The above results support the
idea of multiphonon-assisted hopping of small polarons between next nearest neighbours as the
transport mechanism responsible for the strong high temperature dependence of the electrical
conductivity.
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